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MONOMIAL CONDITIONS ON PRIME RINGS 

BY 

LOUIS ROWEN 

ABSTRACT 

The study of pivotal monomials (and related conditions) is continued and 
extended, with the aim of studying carefully a situation generalizing Martin- 
dale's theory of prime rings with generalized polynomial identity. This is used 
to describe various classes of rings in terms of simple elementary sentences. The 
focus is on prime "Johnson" rings, which play a crucial role in our characteriza- 
tions. It turns out that these rings can be characterized in terms of generalized 
pivotal monomials, thereby yielding a theory similar to that of [17]. 

Introduction 

A very useful tool in the structure theory of prime rings is Mart indale 's  

theorem [15], that the central closure of a prime ring with proper  generalized 

identity is primitive with minimal nonzero left (and right) ideals. Let ~r = {prime 

rings with proper  generalized identity}, ~2 = {prime rings with a left ideal which 

is a PI-ring}, qr {prime rings with a right ideal which is a PI-ring}, and 

~4 = {rings whose maximal left quotient ring is an endomorphism ring of a left 

vector space over  a central simple division ring}. Using Mart indale 's  theorem, 

Jain [10] showed that ~1 = ~2 = ~3 = ~4 and proved that no ring in ~ has a 

nonzero nil left (or right) ideal. 

It is natural to weaken ~4 to {rings whose maximal left quotient ring is an 

endomorphism ring of a left vector space over  a division ring}, and to ask 

whether  Jain's results can be extended to this class of rings. Such extensions will 

be given in w167 and 2. The method is to study prime Johnson rings "internally,"  

easily obtaining some useful properties.  

In w we will indicate how these results enable us to describe pr ime rings in 

terms of various e lementary sentences (of type 3V3). This continues the 

program of [2], [15], [16], [17] (and part  of PI- theory) ,  of describing the structure 

of rings in terms of simple e lementary sentences. 
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In order to be consistent with [17], we will be concerned with the category of 

rings with left module (R-mod),  although many results quoted are actually 

proven in the symmetrical situation, in Mod-R, in the cited papers. Hopefully, 

no confusion should arise thereby. 

w Essential subrings of primitive rings with socle 

All rings are associative, not necessarily with 1, and "module"  means left 

module. R will always be a ring. An R-module M ~ R is an essential extension 

of R if R ~ M'  ~ 0 for each nonzero submodule M'  of M. A left ideal J of R is 

large if J A B ~  0 for every nonzero left ideal B of R. For a subset V of an 

R-module M, define Vx ~ = {r E R I rx E V}, x in M. It is known (and easy to 

show) that if M is an essential extension of R, then Rx -~ is large, for all x in M. 

For subsets S, V of R, define A n n s V = { r E S [ V r = 0 } ,  and A n n ~V = 

{ r E S I r V = O  }. If a C R ,  we write A n n a  and A n n ' a  for AnnR{a} and 

AnnA{a}; note that A n n ' a = 0 a  -1. The left singular ideal Z ( R ) =  

{r C R I Ann ' r  is large}, seen to be an ideal of R. Johnson has shown (cf. [12]) 

that, in the case Z ( R )  = O, the injective hull Q ( R )  of R can be provided with a 

ring structure which agrees with the R-module  operations; motivated by this 

result, call R an essential subring of a ring R '  _~ R if R '  is an essential extension 

of R, with respect to the induced R-module structure. (In this case, R '  is 

sometimes called a left quotient ring of R, but this terminology is also used in 

other situations in the literature, and will not appear further in this paper.) A 

nonzero left ideal of R is uniform if it does not contain a direct sum of two 

nonzero left ideals of R. 

THEOREM (Johnson [12, theor. 3.1]). I f  R is a prime ring with uniform left ideal 

and if Z ( R ) = 0 ,  then Q ( R ) ,  the maximal left quotient ring of R, is a ring of 

endomorphisms of a left vector space over a division ring. 

(Johnson actually proved a more general result, attributing the theorem 

quoted above to Lambek [13, theor. 4.2]; perhaps the results of this paper could 

be extended to Johnson's broader  context of "irreducible" rings (cf. [12]).) A 

ring is primitive if it has a faithful irreducible left module. Also, the socle of a 

ring is 0 unless the ring has a minimal nonzero left ideal, in which case the socle is 

the sum of the minimal nonzero left ideals. Now, let soc(R)  denote the socle of 

R. By [9, theor. 2, p. 65], if R is semiprime, then s o c ( R ) = 0  unless R has 

minimal nonzero right ideals, in which case soc(R)  is the sum of the minimal 

nonzero right ideals of R ; thus soc (R) is an ideal. Call R a (left) Johnson ring if 
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R is an essential subring of a ring of endomorphisms of a left vector space over a 

division ring. The Lambek-Johnson theorem then states, "Any  prime ring with 

uniform left ideal and with zero left singular ideal is Johnson." (This definition of 

"Johnson"  is more general than Faith's [6], which also requires the analogous 

condition on the right.) 

Let R be prime with left ideal V and right ideal V'. Let U = Annv V, 

U'  = Ann(, V', W = V/U, W'= V'/U'. W and W' are easily seen to be prime 

rings. 

PROPOSITION 1. (i) If  W or W' has uniform left ideal, then R has a uniform left 

ideal; 
(ii) if Z ( R ) ~ O ,  then Z ( W ) ~ O  and Z(W' )~O.  

PROOF. (i) First suppose L / U  is a uniform left ideal of W, and let L '  = VL, a 

nonzero left ideal of R. We claim L '  is uniform. Indeed, suppose B1, B2 C_ L '  are 

nonzero left ideals of R. Then VB~ ~ 0 and VB2 ~ 0, so B,, B2 ~ U. Since L / U  is 

uniform, we have b, in B, - U, such that (b~ - b2) E U. Hence 0 ~ Vbl C_ B~ n B2, 

proving L '  is uniform. 

Next, suppose L/U'  is a uniform left ideal of W'. Pick v in V' such that 

L v ~  0, and let L '  = RLv. We claim that L '  is uniform. Indeed, suppose B, _C L '  

are left ideals of R, i = 1,2, and let B',= V 'B , v - 'AL .  Clearly 0 ~  V'B, C_ 
V'RLv C_ Lv, implying (B', + U')/U' are nonzero left ideals of W'. Hence, there 

exist x, in B ' , -U ' ,  such that ( x j - x 2 ) E U ' .  Then O ~ x , v E  V 'B tA  V'B2C_ 

B, n B2, proving L '  is uniform. 

(ii) Let Z1 = ( Z ( R ) V  + U)/U. Clearly, Z,  ~ 0, since R is prime. Moreover,  

for every x E Z ( R ) V  and every nonzero left ideal B / U  of V / U  we have 

VB n Ann'  x ~ 0, so (VB n Ann'  x)2 ~ 0, implying (VB n Ann'  x) cr U. Thus, 

B n U x - ' ~  U. This proves (x + U ) E Z ( W ) .  Hence, Z ( W ) ~ _ Z ~ O .  

Next, let Z2 = ( V ' Z ( R ) +  U') /U'~  O. Pick arbitrarily v in V' and z in Z(R) .  

For any nonzero left ideal B~ U' of W', we claim that B N Ann' (vz) ~ U'. This is 

obvious if B y = 0 ,  so assume Bv~O. Then V ' ( R B v O A n n ' z ) ~ O ;  since 

V'RB C_ B, we have nonzero bv in Bv such that bvz = 0. This yields b in 

(B n A n n ' ( v z ) ) -  U', proving the claim. It follows that vz + U ' E Z ( W ' ) .  

Therefore  Z(W')~_ Z2~O. Q.E.D. 

COROLLARY 2. If  either W or W' has uniform left ideal and if either Z ( W )  = 0 

or Z(W' )  = O, then R is Johnson. 

A prime ring is Goldie if it is a (classical) left order in a simple artinian ring (cf. 

[7, 8]). Goldie [8] has characterized Goldie rings by the following two properties: 
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the left singular ideal is 0, and every nonzero left ideal contains a uniform left 

ideal. Hence, with the above notation, we have 

COROLLARY 3. I f  W or W '  is Goldie, then R is Johnson. 

The remainder of this section will be spent in examining prime Johnson rings, 

obtaining converses of the above results and developing structure-theoretic 

tools. For the remainder of the discussion through Theorem 4, let R be a prime 

Johnson ring, i.e., R is an essential subring of a ring R '  of endomorphisms of a 

left vector space over a division ring. Then R ' i s  primitive and soc(R')/~ 0. Let M 

be a faithful irreducible left R'-module,  with D = EndR,M. Note that R'C_ 

End MD, and soc (R ') -- {finite-ranked transformations of End Mo}, by [9, Struc- 

ture Theorem, p. 75]. 

Let {y,} be a D-basis of M. For each i, define e, in soc(R')  by e,(Y~jy, d,) = y,d,. 

Also, for each d in D, define d ' E  EndMo by d'(Ejy/dj)= Y.lyjddl. Clearly, the 

map d ~ d '  is an isomorphism of D with a division subring D '  of EndMo;  

[e,, d'] = 0 for all d '  in D' ,  all e,. Although we need not have d'  E R ', it is obvious 

that for any r in soc (R '), we have rD'C_ r soc (R') and D ' r  _C soc (R')r. We can 

find large left ideals J, of R such that 0 ~ J,e, _C R;  since R is prime, we can 

choose r, in J,e, such that J,e,r,~O. (Of course, r, E socR' .)  Then r,y, = E, yflj,, 

suitable d,, in D, with d,,~ 0; r,y~ = 0 for i ~  k. Note that r,d'r, = r,d'd',, for all d '  

in D' .  In particular, r,(d;,)-' and (d;,)-'r, are rank 1 idempotents, and r, 2 = r,d;,. 

THEOREM 4. (i) I f  ar, b ~ O, for suitable a, b in R ', then ar ~b ~ 0 for all t >- 1; 

(ii) r,R'r, = r,D'r,, which is a division ring; 

(iii) r, Rr, is a (classical) left order in r,R'r,; 

(iv) for V = R'r,, V1 = Rr,, V'  = r,R', V~ = r,R, the rings V / A n n v V  and 

V ' /Annv ,  V'  are division rings in which V J A n n v ,  V1 and VI /Annv~Vl  are left 

orders. 

PROOf. (i) Suppose ar, b ~ O. Then, for some y~ in M, ar, byk ~ O, so 0 ~ r, byk = 

r,e,byk = r,(y,d) for suitable d in D. But then ar~byk(d-ld~,-'d) = ar~y,d~,-'d = 

ar,(d',)'-'y,d~,-'d = ar, y,d = ar, byk~ O, so ar~b~ O. 

(ii) First we show that r,D'r, is a division ring. For any d~, d~ in D' ,  

(r,d'~r,)(r,d;r,) = r,d'~(d],)2d;r, ~ r,D'r,. Clearly r,(d;,)-2r, is the identity, and r,d'r, 

has left and right inverses r, (d ;, )-~(d')-'(d;, )-2r,, so r,D 'r, is indeed a division ring. 

Now choose r in R '  and let rr, y, = Y.,y~d~. Then r, rr, y, = r,y,d, = r,d;(d;,)-~r,y, ; since 

r,y~ = 0  for each k ~  i, we conclude that r, rr, = r,d;(d;,)-lr, E r,D'r,, implying 

r,R'r, = r,D'r,. 

(iii) Suppose r, ar,~O, a in R' .  By (ii), there exists d '  in D '  such that 
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r, d r, ~ 0, implying there is a large left ideal J of R with (r,d'r,)(r:,) = r, ar,. By (i), 2 , 2 
2 t 2 O~ Jr,d r, C R. Then 0 ~  (r, Jr,)(r, ar,)C r, Rr,, proving that r, Rr, is a left order in 

r,R ' r,. 

(iv) For x in V, let ~ denote the image of x in I7" = V/Annv V. We can show 

that 17' is a division ring, by direct computation. Indeed, , -1 ( d , )  r, is the identity; 

also, for any nonzero rr, in I?, we can find d'  in D '  such that r, rr, = r,d'r,, and then 
~' t t - 1  (d,,d d,,) r, is the left and right inverse of rr,. The other assertions are proved in 

similar manner, as consequences of (ii) and (iii). Q.E.D. 

It should be noted that Faith and Chase have investigated essential subrings of 

the form End Mo, for D a division ring and M a D-vector  space, cf. [6, pp. 

106-7]. Theorem 4 (ii) and (iii) follow easily from their results. 

An Ore domain is a left order in a division ring. (Note that all Ore domains are 

Goldie.) Putting together our previous results yields immediately 

THEOREM 5. 

(i) 
(ii) 

(iii) 

(iv) 
(v) 
(vi) 

The following are equivalent for a prime ring R : 

R is Johnson ; 

R has a principal left ideal V such that V / A n n v V  is an Ore domain; 

R has a principal right ideal Vsuch that V/Ann(, Vis  an Ore domain ; 

R has a left ideal V such that V / A n n v  V is Goldie; 

R has a right ideal V such that V / A n n ( , V  is (left) Goldie; 

Z ( R  ) = 0 and R has a uniform left ideal. 

PROOF. We have (i) @ (ii), (i) f f  (iii), by Theorem 4; (ii) @ (iv) and (iii) ::> 

(v) are trivial; (iv) ::), (vi) and (v) ::> (vi), by Proposition 1. Finally, (vi) ::~ (i) by 

Johnson's theorem. Q.E.D. 

Theorem 4 can be used to obtain even more information about prime Johnson 

rings. In the notation of Theorem 4, let J , = { x E J ,  e, [e ,x~0} and J,2 = 

{x E J,e, [ e,x = 0}. If xl E J,l and x2~ J,2, then clearly, x~ + xzE J,l, i.e., J ,  + J,2C_ 

J,l. 

LEMMA 6. Suppose R is a prime Johnson ring with nonzero elements a, b. 

Then, in the above notation, there exists an element x in some J,l, such that 

axb ~ O. 

PROOF. Clearly e,b~O for some i, implying J,e,b~O (since Z ( R ) = 0 ) ,  so 

aJ~e,b~O. Assume aJ, l b = 0 .  Then aJ,2b~O, implying 0 ~ a J ,  l b + a J , 2 b =  

a ( J ,  + J,2)b C_ aJ, ib = 0, a contradiction. Hence aJ, b ~  O. Q.E.D. 

Now x ~ J ,  r162 J,e,x~ 0 (since Z ( R ) =  0). Hence, we may replace r, by x, in 

the notation of Thearem 4. This procedure yields 
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PROeOSITION 7. If a, b are nonzero elements of a prime Johnson ring R, then 

there exists x in R such that axkb~ O, all k > 1. 

PROOF. Immediate consequence of Lemma 6 and Theorem 4(i). 

PROeOSI'HON 8. If R is a prime Johnson ring, then R has no nonzero nil left or 

right ideals. In fact, given a nonzero left or right ideal B of R, we can find x in some 

J,~ such that xBx is a nonzero domain. 

PROOF. Suppose B is a nonzero left ideal of R. By Lemma 6, there exists x in 

some J,1 such that B x B ~  O. Hence B x ~  0, so x B x ~  O. But xBx is a domain, by 

Theorem 4(ii); thus x2B (and therefore B) is non-nil. The proof is symmetrical if 

B is instead a right ideal of R. Q.E.D. 

Recall that Z ( R ) =  0 for any prime Johnson ring (cf. Theorem 5). 

REMARK 9. Suppose R is an essential subring of a primitive ring R '  with 

nonzero socle, and R '  is dense in EndMo. If Z ( R ) =  0, then R is an essential 

subring of End Mo. 

PROOF. Let R " = E n d M o ,  and choose r " E R " .  Then O ~ r ' r " E  

soc R '( = soc R") for some r' in soc R ', so 0 ~ Jr'r" C_ R for some large left ideal J 

of R. Thus, replacing r' by a suitable element of Jr', we have 0 ~ r 'r"~ R. But 

0 ~ J'r'C_ R for some large left ideal J '  of R, and J 'r 'r"C R. Hence (Rr"fq R)D_ 

J ' r ' r"~O (since Z ( R ) = 0 ) .  This proves that R is an essential subring of 

R"  Q.E.D. 

By this remark, it follows that the maximal left quotient ring of R (cf. [12]) is 

in fact End Mo, so the ring of endomorphisms of a left vector space over a 

division ring in [12, theor. 3.1] is also a ring of endomorphisms of a right vector 

space over a division ring. We assume henceforth that R ' =  End Mo. 

Appendix to w 

Some of the above results generalize theorems of Jain [10], who based his 

proofs on Martindale's theory of central closure of a prime ring [15]. It may then 

be enlightening to link Martindale's central closure to the above theory. Suppose 

R is a prime Johnson ring, an essential subring of R ' =  End Mo, notations as 

before. Let T be the subring of R '  generated by R and D'.  Clearly, R is an 

essential subring of T, so T is prime. Moreover, T has idempotents r, (d',)-~; one 

can prove easily that the Tr, are minimal left ideals of T, so T is primitive with 

nonzero socle. Let C = Cent(D') ,  and let R C  be the subring of T generated by 



Vol. 27, 1977 PRIME RINGS 137 

R and C. R is essential subring of RC, so R C  is prime; moreover,  clearly 

C _C Cent R' .  However,  much more is true: 

THEOREM 10. (i) I f  T E R  j and [ % R ] = 0 ,  then T E C .  

(ii) C = Cent R C  = Cent T = Cent R' .  

(iii) Suppose a # 0 and b are elements in R ' such that arb = bra for all r in an 

ideal B of R. Then b = ya for some 3' in C. 

(iv) There is an onto isomorphism ~o: R C ~ central closure of R, such that 

~o(C) = extended centroid of R. 

PROOF. (i) Given u ~ R' ,  choose a large left ideal J of R such that Ju C_ R. 

Then, for any x in J, xuy = yxu = x3"u, so J[u, 3'] = 0. Since Z ( R )  = 0, it follows 

easily that [u, 3'] = 0; hence y E Cent R'.  By definition (of D),  there exists d in 

D such that yy = yd for each y in M. In particular, yy, = y,d, each i, so 3' = d'. 

On the other hand, for every c in D, each y,, [ y , c ' ] y , - - 7 ( y , c ) - c ' ( y , d ) =  

y, cd - y, cd = 0. Therefore  y E C. 

(ii) Immediate consequence of (i). 

(iii) Define y: M---~M by y(E,r~ay, dj)=E,r',bysdj, all r~ in R' ,  all dj in D. 

Clearly d o m ( y )  = M, since M is R'-irreducible, but we still must show that y is 

well-defined. Well, suppose E;'~ r~by, d~ ~ O. Then ek E,.~ r~by, d~ ~ 0 for some k. 

One can find a large left ideal J of R such that JeEr', C_ R, 1 <= j <= v, and Jekr', ~ 0 

for some i. Now 0 J J' a C R for some J'. J' aBJekr', ~ O, so aBJe~ ~ O. Thus, 

aBJek ~ 1  r~by, d, ~ O, implying, by hypothesis, bBJe~ ET~t r',ay, d, ~ O, so 

E~=~r~ay, dj~ O. Hence, y is indeed well-defined. 

For all d in D, (y(E,r'jayjdj))d = E,r'jby, djd = y(Er',ay, d~d), so 3' E R'.  But a 

similar argument shows that [ y , R ' ] = 0 ,  implying y E C. Moreover,  

(ya - b)M = 0; hence ya = b. 

(iv) Let us review briefly Martindale's definition of the central closure of R. 

Consider {left R-module  homomorphisms from (2-sided) ideals of R to R}. 

Given such maps f~: B~--*R and f2: B2--~R, we say f~ ~ fz if, for some ideal 

B _C B~ (q B2, f~ and f2 have the same restriction to B. One can show that ~ is a 

congruence with respect to addition and composition of functions, so we wind up 

with a ring structure /~ of equivalence classes (under ~ ) .  Given r in R, let 

f,: R ~ R be defined by f,(r') = r'r, each r' in R. Then r ' ~  [f~] is an injection of 

R into/~. Cent (/~) is the set of equivalence classes of bimodule homomorphisms 

from ideals of R to R, and is called the extended centroid of R ; the subring of /~ 

generated by R and Cent/~ is the central closure of R, and will be written/~. 

Now we define a map ~ : R C  ~ 1~ in the most natural way possible. Suppose 

~,~ E RC, nonzero x, in R, nonzero y, in C. Let B, = R n Ry? ~, a nonzero 



138 L. ROWEN Israel J. Math. 

ideal of R (since R is essential subring of RC).  Then (f ') ,B,)(E~.lx, y,)C_ R, so 

ET=I x,'y, induces a left module homomorphism f: I"),B, ~ R, by right multiplica- 

tion in RC. Let ~(E,~.~x,3,i)=[f]. Clearly, ~:RC---~I~ is a well-defined 

homomorphism. Suppose u E ker #. Then Bu = 0 for some nonzero ideal B of 

R. But then B ( R  N Ru)  -- 0, implying R tq Ru = 0; hence u = 0, so kerq~ = 0. 

To show ~ is onto, it suffices to prove the last assertion, that ~o(C) = Cent/~. 

Clearly q~(C) C Cent/~. On the other hand, suppose [f] E Cent/~, i.e., f: B ~ R 

is a bimodule homomorphism, for a suitable ideal B of R. For any b in B, 

f(b)rb = brf(b) for all r in B;  hence, by (ii), f ( b ) =  3,b, suitable 3, in C 

Moreover, 3' is independent of the choice of b in B. Indeed, suppose f(b,) = 3,, 

for b~, b2 in B. For all r in B, 7lb~rb2 = f(bJrb2 = blrf(b2)= 3,261rb2, implying 

(~1 - 72)blBb2 = 0, so 3'1 = 3'2. Thus, there exists 3' in C such that f (b)  = 3,b, all b 

in B. Clearly, r = [f], proving that r  = Cent/~, as desired. Q.E.D. 

Theorem 10 shows that the central closure of any prime Johnson ring (in 

particular, any prime ring with a proper generalized identity) is canonically 

identified with the subring of T generated by R and Cent T, fulfilling our aim of 

tying the theory of the central closure into the theory of w 

w Rings with pivotal monomial and related conditions 

We recall definitions from [17]. Let Z{X; t} be the free ring generated by the 

noncommuting indeterminates X1," "', X,; lr k(t) = {monic monomials 

h E Z { X ; k }  I h ~ X I . . . X ,  and degh=>t};  R1 is the ring with 1 formally 

adjoined to R. An element y in R1 is left R-regular if y r~  0, all nonzero r in R ; 

y is strongly left R-regular if y r ~ 0  and r y e 0 ,  all nonzero r in R, and if Ry is 

large. Call X1" �9 .X, R-pivotal (resp. almost R-pivotal) if, for each homomorph- 

ism ~:  Z{X; t}---~ R, one can find strongly left R-regular (resp. left R-regular) 

y ~ RI, such that y ~ ( X l - ' - X , ) E  Rl(p(~r'(t)). If, for each ~, we can set y = 1, 

then XI" �9 .X, is absolutely R-pivotal. If X1- �9 .X, is R-pivotal for some t, we say 

R satisfies a pivotal monomial. 

THEOREM [17, theor. 6]. Let R be prime. X 1 "  .X, is R-pivotal if and only if R 

is a left order in a simple artinian ring of index <-_ t (where we define the index of a 
simple artinian ring M, (D) to be n). 

Applying this result to Theorem 5 yields 

THEOREM 12. The following conditions are equivalent for a prime ring R : 
(i) R is Johnson ; 

(ii) R has a left ideal V such that V / A n n v  V satisfies a pivotal monomial ; 
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(iii) R has a right ideal V such that V/Ann (, V satisfies a pivotal monomial ; 

(iv) R has a principal left ideal V such that V / A n n v V  is an Ore domain; 

(v) R has a principal right ideal V such that V/Ann(, V is an Ore domain. 

Unfortunately, pivotal monomials do not pass to subrings (in particular to left 

and right ideals) in a natural way. Still, it is possible to obtain useful results by 

modifying the definitions. An element y of Rx is V-regular if yx Z Ann' V for all 

x in V - Ann' V. Clearly, every left regular element is V-regular for all V C R. 

PROPOSITION 13. Let V be a right ideal of R. Suppose V/Ann(, V is a prime 

ring and there exists k >= t such that, for any homomorphism tp: Z{X; k}---~ V, we 

can find V-regular y in R~ with y~o(X1. . .X,)V C_RIr Then every 

chain of left annihilators in V /Ann( ,V  has length <= t + 1. 

PROOF. (as in [17, prop. 3]). Let.- denote canonical images in i S" = V/Ann(, V. 

Suppose that there exists a chain of left annihilators I7" D/$1 D/-7,2 D �9 �9 �9 D/S, D 0 

of length t +2,  and let T,, = AnnE,, 1 _-< i =< t. (Note that L,T,V=O, all i.) Pick 

arbitrarily s in T,/S,, 1 _-< i _-< t; set x, = 0, t < i _-< k. Define r Z{X; k}--* V by 

~(X, )=x , ,  each i. Since x,x, E A n n ' V  for each j>=i, we see that 

yxl . . . x ,  E A n n ' V  for some V-regular y. Hence x l . . . x , ~ A n n ' V ,  i.e., 

s "s = 0, so TI(LIT2)...(L,_~T,)L, = 0, contrary to the fact that ( '  is prime. 

Therefore, there is no chain of left annihilators of length > t + 1. Q.E.D. 

Let us refine further the idea of pivotal monomials. Given a right ideal V of R, 

call a V-regular element y of RI Ore V'-regular if, for every subset B of R such 

that V B V # O ,  we have r in R and b in R~B, such that V b V ~ 0  and 

(ry - b ) V  = 0. If V'C_ V, then every V-regular element is clearly V'V-regular. 

Motivated by this fact, we call an Ore V-regular element y of R '  strongly Ore 

V-regular if y is Ore V'V-regular for every subset V'C_ V. 

Recall that a ring R is Ore when it satisfies the Ore condition: For any 

elements r~, r2, rl regular, one can find r3, r4 in R, r3 regular, such that r4r~ = r~r2. 

LEMMA 14. Suppose V is a right ideal of R and I7 = V/Ann'  V is a semiprime 

Ore ring. Then, [or any element y in V, if ] is regular in ~', then y is strongly Ore 

V-regular. 

PROOF. Let V'_C V. We need to prove that y is Ore V'V-regular. Well, let 

B C_R with V ' V B V ' V ~ O .  Then vlbv2V~O for suitable vl in V, b in B, v2 in 

V'. By the Ore condition, there exist ~ ,  ~, in V, ~3 regular, such that 

f~,] = O3vlb. Hence (v,y - v3v~b)V = 0; in particular, (v4y - v3v~b)V'V = O. On 

the other hand, 03vlbv2 # 0, so v3vlbv2 VV3vlbV2 J;~ 0, implying v2Vv3olbv2V# 0; 
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thus V ' V v 3 v l b V ' V ~ O .  This proves y is Ore V'V-regular. It follows im- 

mediately that y is Ore V-regular; hence y is strongly Ore V-regular. 

Q.E.D. 

Define a right ideal V of R to be pre-Goldie  (resp. strongly pre-Goldie)  of 

degree t if there is k _-> t, such that, given a homomorphism ~: Z{X; k}---} V, we 

can find Ore V-regular (resp. strongly Ore V-regular) y in R1 and r' in 

Rl~(Trk(t)), with ( y ~ ( X ~ . . . X , ) - r ' ) V  = 0. Clearly, every right ideal of a ring 

with absolutely pivotal monomial is strongly pre-Goldie; also, each semiprime 

Goldie ring is itself strongly pre-Goldie, by [17, theor. 7] and Lemma 14. 

PROPOSITION 15. I f  V is a pre-Goldie  right ideal o f  R such that ~," = 

V/Ann~ V is prime, then 17 does not contain an infinite direct sum of  nonzero left 

ideals. 

PROOF. By Proposition 13, there is a maximal chain 0 = LoC -.- C/S,+~ = Q 

of left annihilators in V. Since /So contains no (nonzero) left ideals of I7, the 

proposition follows inductively from 

CLAIM. I f  E,.~ contains an infinite direct sum of  left ideals of  V, then L, 

contains an infinite direct sum of  left ideals of  V. 

To prove the claim, let L =/S,+,, and suppose /3 = Ok/3kC_L is an infinite 

direct sum of left ideals of 17. Following the proof of [17, prop. 5], we search for a 

nonzero element of /~n/~,.  Let T,,=AnnL/~/, 0 -< j<_- i+ l .  For each u, 

T,/3, ~ Z.1, so pick x. in T,/~. - T,+~. L D A n n ~ ,  _D L, implying Ann;_g, =/_~, 

by [17, prop. 4(ii)]. 

Since V is pre-Goldie of degree t, we have some k _-> t such that, given 

q~: Z{X; k}---~ V, ( y ~ ( X ~ . . . X , ) - r , ) V  = 0  for suitable Ore V-regular y in R~ 

and r, in R ~ ( r r k ( t ) ) .  In particular, we define ~o by q~(X.) = x., 1 _--- u _-< t, and 

q~(X.) = 0, t < u _-< k. Also, we can find m such that { ~ , . . . ,  2,} C/31 ~) - . -~ /~m.  
w 

VBm+~ ~ O, implying VR~B~+~ V ~  0; by definition of Ore V-regular, we have b 

in R I B . , . ,  and x in R, such that (b - x y ) V  = 0 and V b V ~  O. Choose v~, v2 in V 

such that v , b v ~  O. Now v l x y x , . . . x , E  v~xRz ~0(rrk(t)); comparing components 

of /~  yields v ,xy  x~ . �9 . x ,E  v~xR~ ~(Tr ~(t - 1)~,, so v~xy~, . .  �9 ~, = v~xr,_~2,, suita- 

ble r,_l in R~p(~rk( t  - 1)). But then ( v ~ x y x , . . . x , _ ~ - v , x r , _ , ) E B  n Ann;2,  = 

/3 n L,, so our search is done unless v ~ x y x ~ . . . x ,  , = v,xr,_, ~ t~xxR~q~('trk(t  - 1)). 

Continuing in this way, we have a nonzero element o f /~  n/S, unless v~xyg~ 

v~xR~ ~ ( ~r ~ (1)). Comparing components of /3 yields v lxy  2~ = v~xrox, suitable ro 

in R~x~ + . . . +  Rtx,.  Since v ~ x y -  v~xroG B n ft.,, our search is done unless 

v lxy  = v~xro. But v~xy = v~b~ B,,§ and v lx ro~  Q~,~ + " �9 + 172, C 
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/3, e "  " "O B,, ; hence v~b = 0, contrary to vlbv2 ~ O. Thus we always have some 

nonzero element of /~ A/S,, which we call /~. 

Now / ~ , E / 3 ~ e " ' O / 3 p  for some p. The above argument shows that 

( e o  >~/~o) C_ i ,  contains a nonzero element 62. Continuing in this way gives us an 

infinite number of /~ such that G,  ~'/~ C_/S,. Thus, the claim is proved, so the 

proposition follows. Q.E.D. 

(The careful reader may wish to note that the full force of the definition of 

pre-Goldie is not needed in the above proof.) We recall the Faith-Utumi 

Theorem: 

Any (left) order in a simple artinian ring M,(D),  D a division ring, contains a 

subring of the form M,(T), T an order in D. 

THEOREM 16. Let V be a right ideal of R, and assume I5" = V/Ann(..V is 

prime. The following conditions are then equivalent" 

(i) V is pre-Goldie of degree <- t; 

(ii) Q is an order of a simple artinian ring of index <= t; 

(iii) V is strongly pre-Goldie of degree <= t. 

PROOF. (i) f f  (ii) By Propositions 13 and 15, and by Goldie's theorem, I7" is 

an order in a simple artinian ring; by Proposition 13 and the Faith-Utumi 

theorem, this ring has index _-< t. 
(ii) f f  (iii) X~ . . .X ,  is V-pivotal; by Lemma 14, this implies V is strongly 

pre-Goldie of degree -< t. 

(iii) =), (i) Immediate. Q.E.D. 

COROLLARY 17. Every pre-Goldie right ideal of a prime ring is strongly 
pre-Goldie. A prime ring is Johnson if and only if it has a pre- Goldie right ideal. 

PROOF. Immediate consequence of Theorems 16 and 12. 

COROLLARY 18. If V,, V~. are right ideals of a prime ring, if V, is pre-Goldie, 

and if VI C_ Vz, then V, is pre-Goldie. 

PROOF. V2 is strongly pre-Goldie, by Corollary 17, so V, V, is pre-Goldie; it 

follows easily that V~ is pre-Goldie. Q.E.D. 

One nice aspect of concepts like strongly pre-Goldie is that they provide a way 

of passing monomial conditions from rings to right ideals and their homomor- 

phic images. 
Meanwhile, let us see how pre-Goldie ideals of a Johnson ring fit into the 

endomorphism ring R '  of w 
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LEMMA 19. Suppose R is an essential subring of a ring T with 1, and R is 

prime with Z ( R  ) = O. If V is a right ideal of R, then V/Ann(, V can be embedded 

as an essential subring of the prime ring VT /Ann ' (VT) .  

F 

PROOF. Let VT= V T / A n n ' ( V T ) ,  and let denote the canonical 

image in VT. Then I5" = (V + Ann ' (VT)) /Ann '  VT ~- V~ V n Ann'  VT = 

V / V  NAnn '  V = V/Ann( 'V.  

Moreover,  if 0 ~ .~ E VT, then x v ~  0 for some v in V; 0 ~ Jx C_ R for some 

large left ideal J of R, and J ( x v ) ~  0 (since Z ( R ) ~  0), implying 0 F  VJ~ C_ re. 

Thus 'r is an essential subring of VT. Q.E.D. 

LEMMA 20. If T is a primitive ring with nonzero socle and if V is a right ideal 

of T, then V/Ann('  V is primitive with nonzero socle. 

PROOF. Standard. 

THEOREM 21. Suppose R is prime Johnson, an essential subring of a ring R '  of 

endomorphisms of a left vector space over a division ring. I f  V is a pre- Goldie right 

ideal of R, of degree t, then V/Ann(, V can be embedded as a left order in the 

simple artinian ring VR ' /Ann' VR ', which has index t, and VR'  is a sum of t 

minimal right ideals. (In particular, V C_ soc(R') .)  

PROOF. Let VR'  = VR ' /Ann' VR'  and IS" = (V + Ann' VR ' ) /VR'  -~ V/Ann'vV.  

By Lemma 19, I7" is an essential subring of VR', which is primitive with nonzero 

socle, by Lemma 20. But IT' contains no infinite direct sum of left ideals; hence, 

soc (VR') is a sum of only a finite number of minimal left ideals of VR', implying 

VR' is simple artinian. Since every large left ideal of a prime Goldie ring contains 

a regular element,  it follows that IS" is a left order in VR'. Moreover,  VR' has 

index _-< t, in view of Theorem 16. 

By an observation of Drazin [5], X , . . . X ,  is absolutely VR'-pivotal. Hence, in 

view of [17, theor. 11], (VR ' )  '§ C_ soc R' .  But R '  is a ring of endomorphisms of a 

vector space over a division ring, which implies R ' / soc (R ' )  is prime. Therefore  

V R ' C s o c ( R ' ) ,  so VR'  is a sum of minimal right ideals of R' .  Since X I "  .X, is 

absolutely VR'-pivotal, one sees easily that VR'  is a sum of t minimal right 

ideals of R'.  Q.E.D. 

The converse of Theorem 21 is routine. Namely, if VR'  is a sum of t minimal 

right ideals of R' ,  then VR' is simple artinian of index _-< t, so I7" is a prime 

Johnson ring, an essential subring of VR'; a straightforward argument shows that 

'r is a left order in VR' and is thus Goldie, so V is pre-Goldie of degree =< t. 
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w Structure of rings in terms of elementary sentences 

In this section we will examine the structure of rings in terms of elementary 

sentences. In particular, we shall work towards a generalization of Martindale's 

theorem to describe when R is Johnson. Dealing with a ring R, our first-order 

language will include the operations + ,  - ,  and �9 as well as the relation -- (and 

of course the symbols ^, v, - ,  and the quantifiers V, 3). There are two obvious 

choices for the constant symbols. Certainly we want 0 and ! (and thus each 

n E Z). In this case the study of universal atomic sentences is merely the theory 

of polynomial identities of R ; the study of atomic =IV sentences is the theory of 

generalized polynomial identities. If we expand the set of constant symbols to all 

of R, then the universal atomic sentences are the generalized polynomial 

identities; "::IV" does not add new sentences because the symbol 3 at the 

beginning has the effect of adding new constants. The somewhat more intricate 

study of "pivotal monomials" is involved with ::IV sentences with constant 

symbols in Z; this paper is concerned with V3 sentences with constant symbols in 

R (or, equivalently, ::IV=I sentences with constant symbols in Z), which include 

the "generalized pivotal monomials.'" 
The following synopsis gives an idea of the direction of the structural results 

on a ring R. There are always conditions on the sentences being "proper" or 

"nontrivial", but we do not state them in the summary. 

I. Polynomial identities (V sentences, constant symbols in Z) 

A. Primitive implies central simple (Kaplansky's theorem) 

B. Prime implies the "central localization" is central simple. 

II. Generalized polynomial identities (V sentences, constants in R) 

A. Primitive implies R is dense in End MD, where M is a vector space over 

a central simple division algebra D, and soc R ~ 0. (Amitsur's theorem [2].) 

B. Prime implies Martindale's "central closure" of R is primitive, with 

proper generalized polynomial identity (as above). (Martindale's theorem [15].) 

III. Pivotal monomials (V3 sentences, constants in Z) 

A. Primitive implies simple artinian [5]. 

B. Prime implies Goldie [17]. (However, the situation concerning pivotal 

monomials of prime Goldie rings is quite intricate, cf. [17].) 

IV. Pivotal generalized monomials (V::I sentences, constants in R) 

A. Primitive implies nonzero socle ([2], [17]). 

B. Prime rings are to be discussed in this section. 

Before continuing, one should remark that pivotal monomials do not comprise 

all atomic V3 sentences, many of which do not behave well in the above 

structural context. Indeed, an example is the yon Neumann regular ring, defined 
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by ( V x 3 y ) ( x y x  = x). An interesting example of a primitive von Neumann 

regular ring with zero socle is given in [4], and it is unknown whether or not there 

exist prime von Neumann regular rings which are not primitive. 

Also, there are results in the above theory, concerning "evaluations" of 

"generalized pivotal monomials". (In primitive rings, they are all in the socle; 

see [16], [17] for details.) These terms will be defined shortly, and will be studied 

in this section. 

Clearly IVB in the above outline provides the link between sections 1 and 2 of 

this paper and the study of rings via elementary sentences. Already, some of the 

results obtained earlier can be translated into V::t sentences (with coefficients in 

R). Note that an element y in R is Ore aR-regular (for suitable a in R) iff 

(Vb, r @ R )(3rz, rz E R )((arba # O) 

(arzba # 0 A (r2y - rlb )a = 0)). 

Thus, "Ore aR-regular" is elementary, and, using [17, theor. 6], theorem 16, and 

corollary 18, we have readily 

THZOREM 22. A prime ring R is Johnson iff, for suitable a #  0, 

(Vx~,.. . ,  x,)(::lr,,-. . ,  r,, y)((y is Ore aR-regular) 

A ( (yax , . . . ax ,  - ~ r, a x , , . . . a x , . ) a  = 0)) 
i 

is satisfied for suitable t and u, with m varying between t and some suitable fixed 

number t', the sum taken over all m -tuples (i~,. �9 ira) # (1, 2,. �9 t). 

This sentence is not atomic, although we could make it atomic by using 1 in 

place of y ; this would yield a sufficient (but not necessary) condition for a prime 

ring to be Johnson. A sentence of this type is known as a "generalized pivotal 

monomial",  defined and studied in [17, sec. 4] as well as in related work by 

Amitsur [2], Desmarais-Martindale [4], and Jain. Thus, a natural question to ask 

is, "Does the presence of a generalized pivotal monomial imply that a prime ring 

is Johnson?" 

Our analysis is based on [17, sec. 4], with appropriate modifications (to deal 

with prime rings in place of primitive rings). Given a ring R without 1, let R~ be 

the ring formed by adjoining 1 formally, and let R~{X} denote the free product 

of R~ and the free (noncommutative) ring Z{X}. Each element f of RI{X}  is a 

sum of "monomials" of the form riX,,r2X,2" �9 " r,X,,r,§ for suitable r, in R,; call 

the r, the coefficients and call X,, . . .X,,  the fingerprint of the monomial. A 

generalized monomial is a sum of monomials with the same fingerprint. Any 

finite set W of R~ containing the coefficients of h is called a coefficient set of h. In 
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general, we will be interested in a generalized monomial coupled with a specific 

coefficient set. 

Let zr(t, R~; W) = {generalized monomials h of R~{X} with coefficient set W: 

the fingerprint of h has the form X ~ . . . X , , ,  7r a nonidentity permutation of 

(1 , . . . ,  t)}. A generalized polynomial h in R,{X} having fingerprint X 1 " -X , ,  

with a coefficient set W, is R-pivotal if, for each homomorphism ~: R~{X}~  R, 
sending each X, to an element of R, we have ~0(h)E R~o(zr(t, RI; W)). Call 

~0(h) an evaluation of h ; h is R-proper if h has a nonzero evaluation (in R). 

From now on, every generalized monomial under consideration has finger- 

print X~X2. . . .  If h can be written as a sum of v monomials with coefficients in 

W, with v minimal, define htw(h) = v ( t +  1). Usually W will be understood, and 

we will merely write ht(h). 
Through Theorem 25, we will assume that R is a prime ring which is an essential 

subring of a primitive ring P. Let M be a faithful, irreducible P-module and let 

D = EndeM, a division ring. Let P '  be the subring of E n d M o  generated by P 

and 1; viewing P'  and D canonically in Endz M, let S = P'D. Since pd = dp for 

all p in P'  and d in D, S is a ring. Also, M is an S-module under the action 

(E,p,d,)z = E, (p,z)d, for all p in P', d, in D, z in M. 

Let ~ = {large left ideals of R}. 

LEMMA 23. For any A in ~, any finite dimensional D-subspace V of M, if 
p A M  C_ V then pM C_ V. 

PROOF. For any p~ in P such that p~ V = 0, we have p~pAM = 0, so p~pA = 0; 

since R is prime, it follows easily that pip = 0, so p~(pM) = 0. Therefore,  by the 

density theorem, pM C_ V. Q.E.D. 

We shall use Lemma 23 without further mention. Note that we can view 

W C R  C P C P ' C S C S { X } ,  and have a map R~---~P' given by(n,r)~n+Ir;  

then there are induced homomorphisms (not necessarily injective) from R~{X}, 

P'{X}, and D, to S{X}. Under  these maps, call P'{X}D the additive subgroup of 

S{X} generated by elements fd, for all f in P'{X}, d in D. Given a generalized 

monomial h of P{X}D and a coefficient set W of h, let U be the D-subspace of 

P'{X}D generated by W and 1. We say a generalized monomial g matches h if g 

is another way of writing h (in P'{X}D) with coefficients in U. (W need not be a 

coefficient set of g.) Define c(h) = dim Uo. This will replace " n "  of [17, theor. 

10] and, in fact, should have been used in that proof. 

DEFINmON 24. A generalized monomial h (X,, �9 �9 X,) with coefficient set W 

is (V, (u,))-dominated for natural numbers u , . . . ,  u,, if there exist D-subspaces 

V, (of M) having respective dimension u,, and A ~ ~ with the following 
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proper ty :  For  each h o m o m o r p h i s m  q~:S{X}---~S with r  and 

q~(X,)V,=0, l _ - < i _  -<t, and for every a in A and z in M, we can find r in 

R'q~(~r(t, S; W))  such that ( ~ ( h ) - r ) a z  E V. 

NOTE. If tWO general ized monomia ls  h~ and h~, with coefficient set W, are 

( V, (u, ) )-dominated,  then h~ + h2 is also (V, (u, ))-dominated.  

THEOREM 25. Suppose V is a subspace (of M )  of dimension Uo and h is a 

generalized monomial in P ' {X}D with coefficient set W. Also suppose h has 

fingerprint X ~ . . . X ,  and is (V,(u,))-dominated. Let b = ht(h),  c = c (h) ,  and 

u = max{uo, u~ , . . . ,  u,}. There is a function ~'~.~: Z+---~Z + and a generalized 

monomial g matching h, such that every monomial of g has a coefficient of rank 

<-r,.~(b). 

PROOF. (Based on [17, theor.  10].) Let  h be a sum of v monomials ,  and let 

V~, . . . ,  V, be as in Definit ion 24. Define r~c (0) = 0 for all u and c, and define 

inductively 

z,.c(b) = max(ub,  ~'u .... (b - 1), ~'u,.c(b') 

for all u ' <  u and all b'=< b). 

If b = 1 then the t heo rem is immediate .  We work by induct ion on b. 

Write  h = ZT=, h,(X, , .  �9 X,_~)X,s~ such that each h~ has coefficient set W and, 

if h, is a sum of v~ monomials ,  Y.vj = v. We  may assume, for some m <_- v, that  for 

all j with m < j <= v, siM C_ V,; m is chosen minimal in this context .  

Let h ' =  ETL~hjX, s, and h " =  h - h ' .  Clearly h" is (0, (u, ) ) -dominated,  so h '  is 

(V, (u, ) ) -dominated and ht (h ' )+  h t ( h ' ) =  b. If h ' ~  0 and h ' ~  0 then,  by induc- 

tion, h '  and h" are each matched to general ized monomia ls  g '  and g", all of  

whose monomia ls  have a coefficient of rank --- max(r,.c(htb'),r,.c(htb"))<= 
r,.c(b), so we are done  with g = g '+g" ;  if h ' = 0  then we are done  by setting 

g = h " =  h. Hence  we may assume h = h ' .  

Let  A be as in Definit ion 24, and choose  z0 arbitrarily in M. Since s~AMe" V,, 

we have s, az ~ V for some a in A, some z in M. By density, there exist p, in P, 

d ~ , ' " , d ,  in D, with d~ = 1, such that p,V,=O and p,skaz = zodk for all k, 

1 < k =< n. Let  A~ = Rp7 ~ E J;. Also let 

h !  n , = Y-i=,h, dj, V', = V,+Y.~=~s~azD, 

and u ', = dim V', _-< u, + c. 

Clearly h'~ has coefficients in W ' =  {wd, [ w E W, 1 <= d, <-n}, so we replace W 

by W' ,  enabl ing us to write h '~X, si as a sum of monomia ls  with coefficients in W. 
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In order to conclude the proof exactly the same way as in [17, theor. 10] (writing 

h = h 'iX, s1 + (h - h ~X, sl) and proving that the conclusion of the theorem holds 

for each part), it suffices to show that h', is (V, (u',))-dominated. 

Well, suppose ~o: S{X}--~  S is a homomorphism sending X, to an element x, 

in R such that x,V', = O, 1 <= i <= t - 1. Given al in A1, since zo is arbitrary, it is 

enough to find ro in R '~0 (~r(t - 1, S; W)) such that (~0(h ~) - ro)a~zo E V. Since X, 

has not yet appeared in this consideration, we may assume ~0 (X,) = a,p,. Now, by 

Definition 24, we have r in R'~( z r ( t ,  S; W)) ,  with ( r  r )az  E V;  clearly r 

has the form Y. rk(a~p,)sk, where r~ E R ' ~ ( r r ( t  - 1, S; W)) and sk E W. By choice 

of the dk, raz = Erka~p,&az = Erka~zod~ = Erkdk(a~zo). Let ro= Erode. Then 

raz = roa~Zo, so 

(h ' i (x l , "  ", x,_,) - ro)alzo 

= ( E h , ( x , , . . . ,  x, ~)(a~zo)dj)-  roa~Zo 

= Y~h,(x~, . . . ,  x,_~)a~p,s, az  - raz 

= (~o (h ) -  r )az  E V, 

as desired. Q.E.D. 

The major application of Theorem 25 is with V = 0 and all u, = O. 

COROLLARY 26. Suppose R is a prime ring, and  R is an essential subring of  a 

primitive ring P. Then every evaluation of  every pivotal generalized monomia l  of  R 

lies in R fq soc P. In particular, i[ R has a proper pivotal generalized monomial ,  

then R is (prime)  Johnson. 

(In many applications, the pivotal generalized monomial will be merely a 

monomial. The common terminology in this case is "generalized pivotal 

monomial.") 

Call a prime ring "nice" if it is an essential subring of a primitive ring. 

Theorem 25 and Corollary 26 lead us to the following question: 

QUESTION. Are all prime rings nice? 

An affirmative answer to this question would complete the theory of general- 

ized pivotal monomials on prime rings. Goodearl (Prime ideals in regular 

sel[-injective rings, Canad. J. Math. 25 (1973), 829-839) proved that if R is prime 

and Z ( R )  -- 0, then the Johnson-Utumi ring of quotients of R is primitive. In 

particular, every prime ring with singular ideal 0 is nice, and we can apply the 

above theory. 

Another way of stating Goodearl 's theorem is, "If  Z ( R )  = 0 and R is prime, 
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then R is an essential subring of a primitive yon Neumann regular ring." 

Unfortunately, the converse is also true. Namely, if R is an essential subring of a 

von Neumann regular ring, then Z ( R ) =  0. (Indeed, it is easy to see that the 

singular ideal of every yon Neumann regular ring is 0, and that if R is an 

essential subring of S then Z(R)C_ Z(S).) This fact complicates an attempt to 

settle the above question. 

Let B ( R ) =  {evaluations of pivotal generalized monomials in R}. Clearly 

B(R)  is a right ideal of R, and B ( R ) ~ O  if and only if R has proper pivotal 

generalized monomials. If 1 E B ( R ) ,  then there is [17, theor. 13] and the 

following parallel theorem: 

THEOREM 27. If R is a subdirect product of nice prime rings {R~ I 3' E F} and 

if 1 C B(R ), then {Rv ] y ~ F} are left Goldie, of bounded index. 

PROOF. Each R, is an essential subring of a primitive ring P~. The proof 

concludes exactly as in [17, theor. 13], to show that { P , [ y  E F} are simple 

artinian of bounded index, so {R, lY E F} are left Goldie of bounded index. 

Q.E.D. 

Having obtained results on rings with B ( R ) ~ O  or with 1E B(R),  now we 

shall look for examples of such rings, thereby setting the stage for applications. 

Unfortunately, the well-known example following [17, lemma 14] is a counterex- 

ample to the converse of Theorem 27 and is also a counterexample to the 

converse of Corollary 26. A slightly different path is more inviting: 

PROPOSITION 28. X1X: is a generalized pivotal monomial of every semisimple 
artinian ring. 

PROOV. Let M,(D)  denote the ring of n • n matrices over a division ring D, 

with matric units {e,j ] 1 _-< i,j ~_ n}. Clearly it suffices to prove that X~X2 is 

pivotal (as a generalized monomial) for M,(D).  Indeed, for any x~, x2 in M,(D),  
we have x,x.. = E?a=~ d,le, j for suitable d,j in D. Hence, for suitable elements d,jkq 

in D, we have 

proving the assertion. 

XlX2 = ~ d,jkqe,,x2elkxleqq, 
I , I , k , q  = I 

Q.E.D. 

THEOREM 29. Suppose there exists an element r in R and a polynomial g (A) in 
(Cent(R))[A] such that g(r) = 0, g'(r) is right invertible (where g' is the formal 
derivative of g), and the centralizer of r in R is semisimple artinian. Then 
1 @ B(R ). (In particular, each nice prime image of R is Goldie, and every primitive 

image of R is simple artinian.) 



Vol 27, 1977 PRIME RINGS 149 

PROOF. (mimicking [16, theor. 4]). Let S be the centralizer of r in R. By 

Proposition 28, X,X2 is generalized S-pivotal. Let g(A)=XT=oc,A', c, in 

Cent(R),  and define f(X)=X~=~ckX~=-~Ir'Xr ~ t , .  For any element x in R, 

f ( x ) E  S, so it follows that f(XOf(X2 ) is a pivotal generalized monomial of R. 

But f(1)f(1) = (g'(r)) 2, an invertible element of R, implying 1 E B(R).  The rest 

of the theorem is Theorem 27 and [17, theor. 13]. Q.E.D. 

NOTE. Using very different methods, Miriam Cohen proved that if, under the 

hypotheses of Theorem 29, we also assume that R is semiprime and is an algebra 

over a field, then R is semisimple artinian. (In particular, every prime image of R 

is simple artinian.) 
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